

Energia térmica na produção de pet food

Por quê enfocar a aplicação de energia térmica?

- 1. Mais barata que a energia mecânica
- Pode colaborar para melhor balanço energético e redução do impacto ambiental da atividade industrial
- 3. Maior preservação de nutrientes

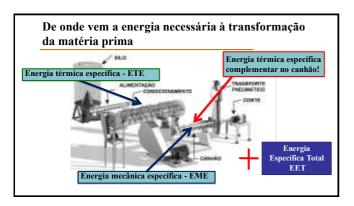
Menor complexação de aminoácidos (preserva valor proteico) Menor perda de vitaminas e selênio

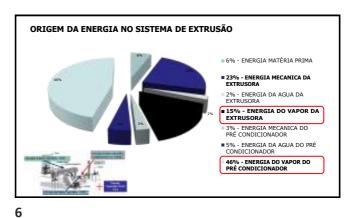
4. Ganho em palatabilidade do alimento

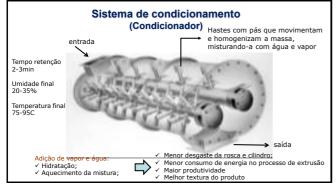
1

Energia térmica na produção de pet food

Dificuldades na aplicação de energia térmica!


- 1. Qualidade e regularidade da produção de vapor
- Capacidade de aplicar e incorporar vapor à massa No condicionador


No interior do canhão extrusor


3

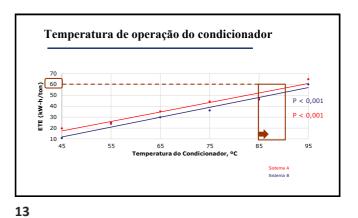
3. Dificuldade de se quantificar a energia térmica aplicada ao produto Medidores precisos de fluxo de massa (ração, água e vapor) Automação ou calculo do balanço de massa no processo Sensores adequados (pressão e temperatura massa) Transformações físico-químicas da matéria prima

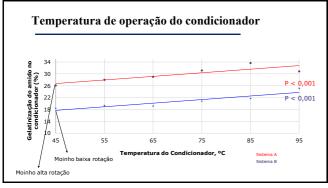
Sistema de condicionamento
(Condicionador)

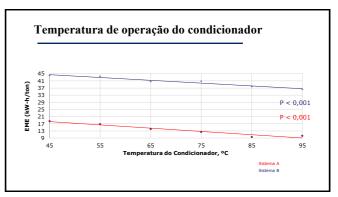
Pontos básicos de controle e verificação

✓ Capacidade de armazenamento/retenção de ração
(6 a 7% do volume de produção)

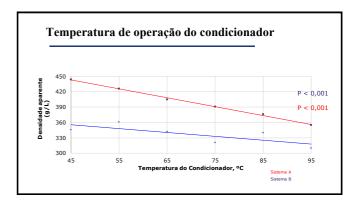
✓ Tempo médio de retenção e seu desvio-padrão
(de 2 a 3 minutos)

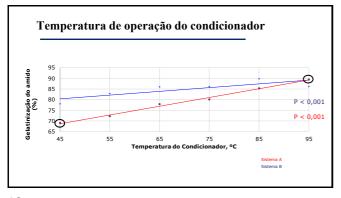

✓ Velocidade de rotação das pás
(suficiente para o tempo de retenção desejado)

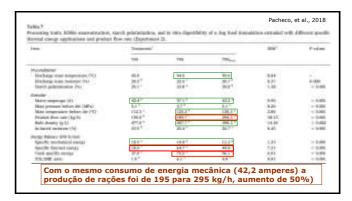

✓ Homogeneização e distribuição da umidade
(minimizar partículas maiores que 5 mm)

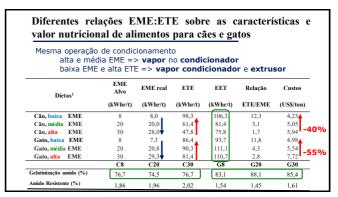

✓ Capacidade de incorporar vapor à massa
(capaz de elevar a temperatura da massa)

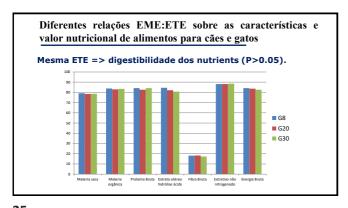
10 11

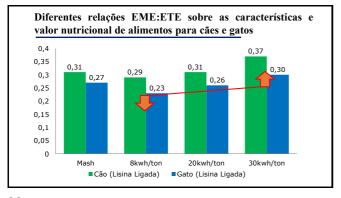


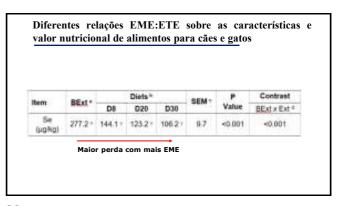




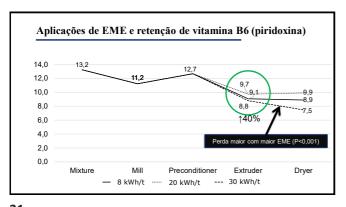


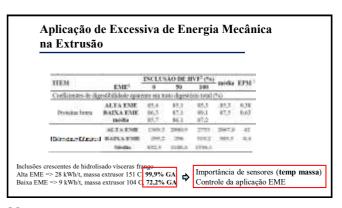

19 20

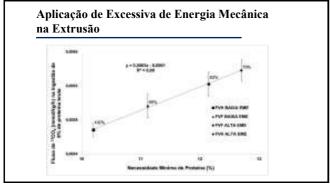


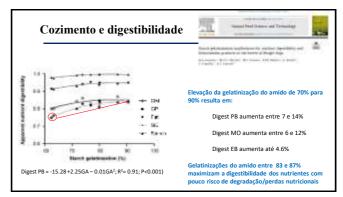


23 24

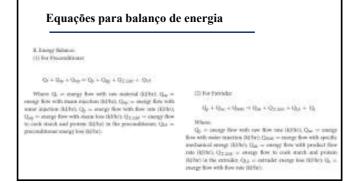



	Tratamentos	1' escolha (n° animais)	Ingestão (% total)	1° escolha (n° animais)	Ingestão (% total)	
CÃES						_
		Empresa 1		Empresa 2		_
Teste 1 (n=30)	Cães, baixa EME	9	30	5	14	_ Cães
	Cães, média EME	21	70**	31	86**	
Teste 2 (n=30)	Cães, baixa EME	18	60*	20	54	1 médi
	Cães, alta EME	12	40	17	46	2 baixa
Teste 3 (n=30)	Cães, média EME	26	81**	27	74**	3 alta
	Cães, alta EME	4	19	8	26	_
GATOS						_
Teste 1 (n=50)	Gatos, baixa EMI	E 29	58	27	54	
	Gatos, média EM	E 21	42	23	46	Gatos 1 médi 1 baixa
Teste 2 (n=50)	Gatos, baixa EMI	E 33	66**	35	70**	
	Gatos, alta EME	17	34	15	30	
Teste 3 (n=50)	Gatos, média EM	E 35	69**	38	76**	2 alta
	Gatos, alta EME	15	31	12	24	





29 30



33 34

Equações para balanço de massa (II for Procondituror $M_1 + M_{eq} + M_{eq} = M_{e} + M_{eq}$ When M_{e} is an experial find the $(k_0^{2}k^{2})$ M_{e} — standard appoint the proconditurer $(k_0^{2}k^{2})$ M_{e} — standard appoint the rate $(k_0^{2}k^{2})$ M_{e} — standard proconditurer $(k_0^{2}k^{2})$ M_{e} — standard proconditurer $(k_0^{2}k^{2})$ M_{e} — standard proconditurer $(k_0^{2}k^{2})$ M_{e} — standard $(k_0^{2}k^{2})$ M_{e} —

35 36

The local (QLobbs and was calculated according to the formula $Q = \pi \cdot e + \pi \cdot T$ Where $m = \max_{x \in X} e^{-x} + e^{-x} \cdot T$ Where $m = \max_{x \in X} e^{-x} + e^{-x} \cdot T$ and $m = \max_{x \in X} e^{-x} + e^{-x} \cdot T$ and $m = \max_{x \in X} e^{-x} + e^{-x} \cdot T$ and $m = \max_{x \in X} e^{-x} + e^{-x} \cdot T$ and $m = \max_{x \in X} e^{-x} + e^{-x} \cdot T$ and $m = \max_{x \in X} e^{-x} \cdot T$ and $m = \max_{x$

Por quê enfocar a aplicação de energia térmica? 1. Mais barata que a energia mecânica 2. Pode colaborar para melhor balanço energético e redução do impacto ambiental da atividade industrial 3. Maior preservação de nutrientes Menor complexação de aminoácidos (preserva valor proteico) Menor perda de vitaminas e selênio

Energia térmica na produção de pet food

4. Ganho em palatabilidade do alimento

37 38

Energia térmica na produção de pet food

Dificuldades na aplicação de energia térmica!

- 1. Qualidade e regularidade da produção de vapor
- Capacidade de aplicar e incorporar vapor à massa
 No condicionador
 No interior do canhão extrusor
- Dificuldade de se quantificar a energia térmica aplicada ao produto Medidores precisos de fluxo de massa (ração, água e vapor) Calcular a energia térmica aplicada Sensores adequados (pressão e temperatura massa)

39 40

41 42